Fluid Variables =============== +-----------------------+--------------------------------------------------+ | Variable | Definition | +=======================+==================================================+ | :math:`\rho` | Fluid density | +-----------------------+--------------------------------------------------+ | :math:`U` | Fluid velocity | +-----------------------+--------------------------------------------------+ | :math:`\tau` | Viscous stress tensor | +-----------------------+--------------------------------------------------+ | :math:`\mu_s` | scalar diffusivity | +-----------------------+--------------------------------------------------+ | :math:`{\bf g}` | Gravitational acceleration | +-----------------------+--------------------------------------------------+ | :math:`{\bf H}_U` | :math:`= (H_x , H_y , H_z )`, External Forces | +-----------------------+--------------------------------------------------+ | :math:`H_s` | External sources | +-----------------------+--------------------------------------------------+ Fluid Equations =============== Conservation of fluid mass: .. math:: \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0 Conservation of fluid momentum: .. math:: \frac{ \partial (\rho U)}{\partial t} + \nabla \cdot (\rho U U) + \nabla p = \nabla \cdot \tau + {\bf H}_U Incompressibility constraint: .. math:: \nabla \cdot U = 0 Tracer(s): for conservative, .. math:: \frac{\partial \rho s}{\partial t} + \nabla \cdot (\rho U s) = \nabla \cdot \mu_s \nabla s + \rho H_s or, for non-conservative, .. math:: \frac{\partial s}{\partial t} + U \cdot \nabla s = \nabla \cdot \mu_s \nabla s + H_s By default, :math:`H_s = 0` and :math:`{\bf H}_U = {\bf 0}`. If gravity is set during runtime, then :math:`{\bf H}_U` defaults to :math:`\rho {\bf g}`.