Fluid Variables
Variable
Definition
\(\rho\)
Fluid density
\(U\)
Fluid velocity
\(\tau\)
Viscous stress tensor
\(\mu_s\)
scalar diffusivity
\({\bf g}\)
Gravitational acceleration
\({\bf H}_U\)
\(= (H_x , H_y , H_z )\), External Forces
\(H_s\)
External sources
Fluid Equations
Conservation of fluid mass:
\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho U) = 0\]
Conservation of fluid momentum:
\[\frac{ \partial (\rho U)}{\partial t}
+ \nabla \cdot (\rho U U) + \nabla p = \nabla \cdot \tau + {\bf H}_U\]
Incompressibility constraint:
\[\nabla \cdot U = 0\]
Tracer(s): for conservative,
\[\frac{\partial \rho s}{\partial t} + \nabla \cdot (\rho U s) = \nabla \cdot \mu_s \nabla s + \rho H_s\]
or, for non-conservative,
\[\frac{\partial s}{\partial t} + U \cdot \nabla s = \nabla \cdot \mu_s \nabla s + H_s\]
By default, \(H_s = 0\) and \({\bf H}_U = {\bf 0}\). If gravity is set during runtime, then \({\bf H}_U\) defaults to \(\rho {\bf g}\).